Taking Stock: Emission Trading andCostEffective Emission ReductionThe European and German case

by

Franzjosef Schafhausen

Former Director General "Climate Change Policies, National, European and International Affairs"

Federal Ministry of the Environment, Nature Conservation, Building and Nuclear Safety, Berlin

Emissions Trading in China and Europe Taking Stock, Thinking Ahead, Looking Beyond Shenzhen 13th December 2017

Facts and History

- Europe's and Germany's energy systems are traditionally based on fossil fuel – especially on coal
- Europe and Germany is poor of resources and there is a high dependence on imports of raw material and energy → possible threats to resource and energy security → huge transfer of welfare from Europe and Germany to energy exporters
- Economic backbone: Engineering and International Trade
- Strong dependence on exports

Framework for Policy architecture

- High awareness of the population respectively the societies on Environment and Climate
- Economy and society traditionally focussing on technology and technological development
- Economy oriented on export concerned about international competitiveness
- Traditional instruments in place like command and control. Taxes and charges as well as subsidies

Overarching needs

- Keeping economic growth and jobs
- Protecting Environment and Climate
- Innovation and creativity technological development
- Cost effectiveness and cost efficiency
- Creation of synergies between existing P&M's and the new ETS (comprehensive strategy)
- Thinking on future generations and future needs

History of the Implementation

History

- The discussion on "carbon pricing" in Europe the internalisation of external environmental effects - started early - in the late seventies respectively In the early eighties
- In Germany we focussed our interest on emissions trading 1982/1983 with the aim to create a new clean air policy
- At the beginning there has been a discussion as well on taxes/charges and emissions trading
- The decision to base the Climate Change policy on emissions trading has been taken at the end of the eigties and the beginning of the nineties

The Trading Periods - reflecting the experiences

Emissions Trading Phase	Time Frame	Structure and responsibility	Jugdement
First Phase	2005 - 2007	one European Directive but 25 National Allocation Plans (NAP's) – which means: 25 National ETS reflecting	national interestPilot Phase – weak implementation to convince all actors
Second Phase	2008 - 2012	one European Directive but 25 National Allocation Plans (NAP's) – again 25 National ETS reflecting national interests	Making the ETS much stronger – more auctioning for the non carbon leakage sectors
Third Phase	2013 - 2020	Transition to a real European Instrument – 100% auctioning for the power sector – benchmarking for carbon leakage industy	Making ETS mor effective - keeping efficiency – being aware of carbon leakage
Fourth Phase	2021 - 2030	European instrument – balancing supply and demand – more flexibility –keeping carbon leakage rules	Reducing the overliquidity –using MSR – keeping carbon leakage rules

Overview First to Third Trading Period in the EU and in Germany

	No. of installations	Cap Ø* [Mt CO ₂ -eq/a]	Scope	
1st TP				
EU	~10,600	2,299	energy generation, refineries, iron and	
Germany	~1,700	499	steel, mineral-processing industries, pul and pape	
2nd TP				
EU	~11,600	2,083	+ steel-processing, mineral-smelting	
Germany	~1,700	444	propylene, ethylene and carbon blac aviation (from 2012 o	
3rd TP				
EU	~12,000	1,950	+ processing of non-ferrous metals, production of aluminium (+PFC), adipic and nitric acid (+N ₂ O), ammonia	
Germany	~1,900	-		

* Without aviation.

Source: EEA, Trends and Projections 2008, 2009, 2013; DEHSt

Activities and sectors in stationary EU ETS

■ Verified emissions 2014 (mln t CO2e)

Source: EEA

ETS and Decarbonisation

Lessons learnt

Lessons learnt l

- The implementation of a unknown instrument like Emissions Trading needs a long time
- The process should start with a (weak) Pilot Phase to convince actors how the system can be used and how to manage it
- Valid data is key "a ton must be a ton!"
- In absence of a worldwide level playing field energy and trade intensive industry must be protected from carbon leakage
- Specific rules for regions and or countries like European Member States are against a broad carbon market
- A choise by operators between alternative rules should be avoided because that would lead to a correction factor and a linear reduction of the free allocation

Lessons learnt II

- The cap must be ambitous to incentivise operators to contribute to the reduction of GHG's (not only business as usual)
- The trading periods are relatively long and the dynamic on technology, prices, costs, infrastructure etc. is high – ex ante needs flexibility during the period and possibilities to intervene (MRV)
- The interaction between ETS and ESD is important some technologies - like CHP - could create a gateway between ETS and ESD sectors
- New infrastructure must be developed (MRV, registry, authorities, exchanges)
- Education and development of know how not only on technology is necessary, but also on economic interdependencies
- The main emitters/emitting sectors should be focussed inter alia to reduce the costs of administration (next Chart)
- ETS and/or carbon pricing is able to address economic and technological opportunities but not administrative, legal, institutional or informational barriers

Distribution of EU-ETS installations in terms of emissions

Source: European Commission

ETS as central pillar of a comprehensive policy mix (package of P&M's)

Source: Öko-Institut, Berlin

Success Stories

- Between 2005 and 2016 the EU ETS GHG-emissions dropped by nearly 26%
- Valid Data we had never before a better information about the energy, environment and climate related situation/structure of companies/installations
- The administration of ETS is very efficient in comparison with other mechanisms
- The economic incentive changes a lot within affected companies suddenly Climate Change becomes an issue for CEO's and controller
- ETS supported innovation and creativity in order to save money
- The cap is the cap so the environmental targets have been fulfilled in every case – very different to other instruments

Success stories

- ETS has a lot of side effects on air quality, waste management and resource saving, cost reduction, waste water mangement, investment cycles and frequency etc.
- German industries urged the German government to keep the emissions trading as single instrument and not to complement it by additional mechanisms

Conclusions

- Paris: 195 countries agreed on the need to protect the global climate and the atmosphere
- The ultimative target of the Paris Agreement creates a huge challenge: "...well below 2° Celius..."
- Paris creates the need not only for a effective but also for a efficient strategy which guarantees the stabilisation and later on the reduction of greenhouse gases
- Emissions trading is able to provide the right framework to deliver effective and efficient results
- During a relatively long lasting process everything is in place and all actors are aware of the Challenges and Chances of ETS
- Carbon leakage rules are necessary if there is no global carbon market or carbon pricing instrument are not implemented all around the world

Conclusions II

Similarities between China and Europe:

- China and Europe are heavily dependent on fossil fuels
- In both regions activities to combat climate change are faced with huge cost differences – so there is an opportunity to reduce GHG's not only effective, but also efficient
- Synergies (Climate, Air Quality, Ressource saving, Waste Management, Waste Water Management, Innovation to dvelop new technologies and offer it worldwide, Economic growth, Jobs) could be used

"Be not afraid of going slowly, be afraid only of standing still!" (chinese proverb)

Thank you very much for your attention!

Decarbonisation – the case of Germany

Allocation and carbon leakage

Competing objectives: Mitigation – Competitiveness

On the one hand

- EU ETS: Price on emissions
- Incentive to reduce emissions and to invest in modern and efficient abatement technologies

On the other hand

- Carbon costs: Disadvantages in competitiveness
- Relocation of production to third countries with less ambitious climate policy
- <u>Carbon leakage</u>: Costs of ETS could lead to an overall increase in greenhouse gas emissions by additional emissions in third countries outside EU

Carbon leakage – Measures in EU ETS (Phase III)

Direct carbon costs

Costs of participation in emissions trading

additional free allocation (100% of benchmark allocation free of charge)

EU wide list of sectors and subsectors exposed to a significant risk of carbon leakage (carbon leakage list)

Indirect carbon costs

Costs related to EU ETS allowance costs passed on in electricity prices

Financial compensation in line with EU state aid rules and national regulation. In Germany: "Strompreiskompensation" (compensation of power price increase by emissions trading)

Carbon pricing on the international level

Carbon pricing regimes worldwide

